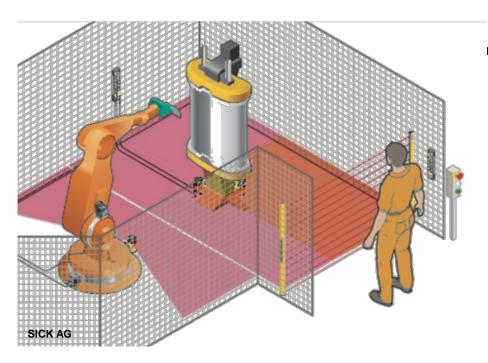
INDUSTRIAL ROBOTS AT THE E

Otto GörnemanolCK AG Central Department for Safety Management & Innovation 2019–06–13

SICK AG ATAGLANCE

SAFETY OF INDUSTRIAL ROBOTS TECHNOLOGICAL DEVELOPMENT - THE STARTING POINT

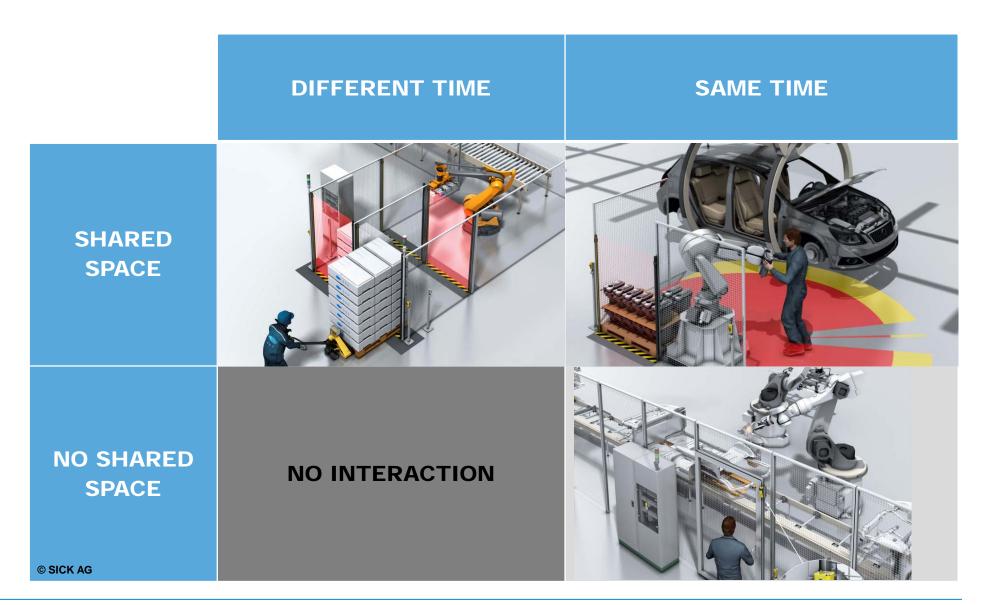

- Classic industrial robots result from the automation of remote manipulators
- At the time of their introduction the related risks where associated to the reliability of their control systems in combination with the possible harm sources:
 - □ Contact with movable elements resulting in; crushing, shearing, impact... injuries
 - Exposure to process related hazards (welding, hot surfaces, sharp edges etc.)
- As a result, the physical separation of the person from the hazard was the most appropriate safety solution (Fencing, using fixed or movable interlocking guards)

SAFETY OF INDUSTRIAL ROBOTS TECHNOLOGICAL DEVELOPMENT - THE CLASSIC INDUSTRIAL ROBOT

- The increased reliability of robot control systems reduced the risk in existing applications.
- Nevertheless, overall risk was increased due to the need for more flexible application (e.g. manual loading) and therefore for a less restricted (time/ space) interaction

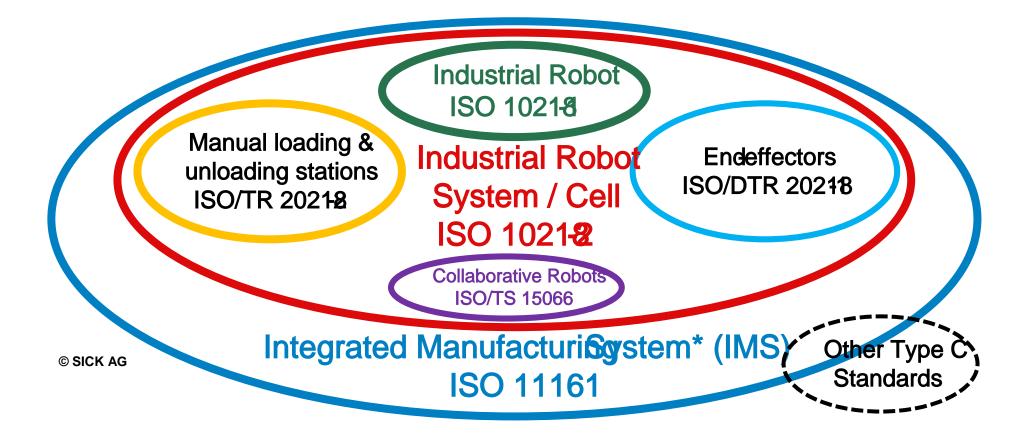

- As a result the fencing was "opened" to allow the required interaction, although
 - □ It requires to apply sensors (ESPE) to detect operators in hazardous zones and prevent any robot movement at the same time
 - Additional limiting of the robot movement (axis limiting) was necessary to reduce footprint

SAFETY OF INDUSTRIAL ROBOTS TECHNOLOGICAL DEVELOPMENT – THE COLLABORATIVE OPERATION



- With the developments in drive and motion control technology and their application to robot control systems the risk in existing applications can be further reduced by:
 - \Box Adapting movement restriction (axis limiting) to the task and the momentary step of the process
 - □ Limiting power and force (speed) at certain steps such that a contact shall not lead to a harm

The aim is to allowhumans to safely work with robots at in the same space. (Collaborative operation)

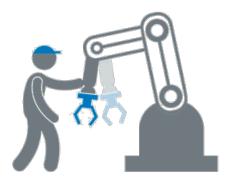


SAFETY OF INDUSTRIAL ROBOTS TECHNOLOGICAL DEVELOPMENT – STANDARDIZATION

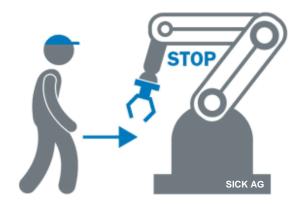
* B1 Type Standard under revision by ISO/TC199-WG

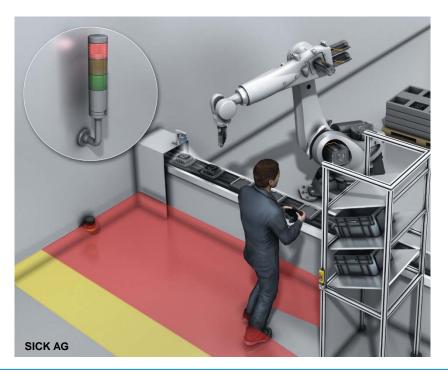
SAFETY OF INDUSTRIAL ROBOTS METHIODS FOR COLLABORATIVE OPERATION - ISO/ TS15066

Safety-rated monitored stop


Hand guiding

Power and force limiting




© SICK AG

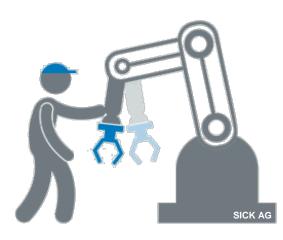
SAFETY OF INDUSTRIAL ROBOTS COLLABORATIVE OPERATION - SAFE MONITORED STOP METHOD

- The robot in the collaborative workspace shall stop and remain stopped when a human is present
- Once stopped, this standstill shall be monitored by the safety-related control system
- Detection of the failure to safely maintain the stopped condition shall result in a category 0 stop.
- The robot may resume automatic operation when the human leaves the collaborative workspace.)



SAFETY OF INDUSTRIAL ROBOTS COLLABORATIVE OPERATION - HAND GUIDING METHOD

- The robot in the collaborative workspace shall stop and remain stopped when a human is present
- Once stopped, this standstill shall be monitored by the safety-related control system
- Detection of the failure to safely maintain the stopped condition shall result in a category 0 stop.
- Robot operation shall only be possible under enabling control an with safely reduced speed sufficiently low to avoid injuries at any time !
- The robot may resume automatic operation when the human leaves the collaborative workspace.)

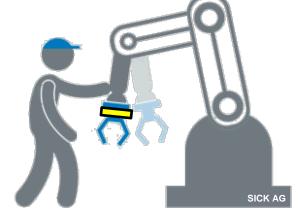


SAFETY OF INDUSTRIAL ROBOTS COLLABORATIVE OPERATION - POWER & FORCE LIMITING METHOD

- Risk reduction is achieved through limitation of power and force applying one of the following:
 - □ inherent mechanical design (e.g. shape, clutches, small drives, limiting valves)
 - \Box inherent control safety functions (e.g. force and torque measuring & limiting)
 - □ safeguarding through PSPE with low actuating pressure or ESPE for collision anticipation resulting in low contact forces

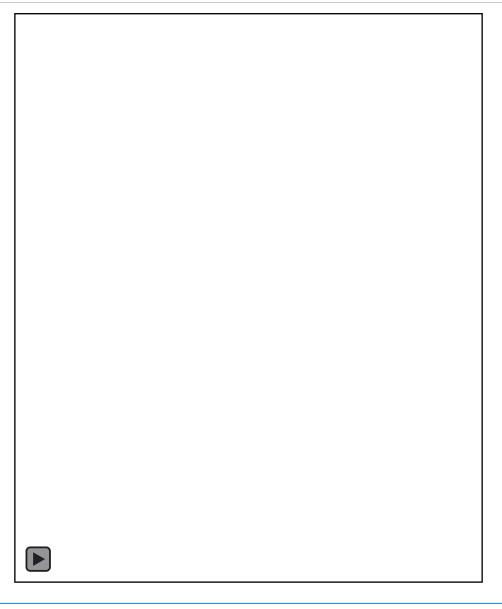
SAFETY OF INDUSTRIAL ROBOTS POWER & FORCELIMITING – LIMITATION AS SOLUTION?

- For collaborative operation with power & force limiting three major problems need to be solved;
 - Contact with the head / face shall be prevented since limit values are not applicable to these body regions ! *
 - 2. Consideration of other hazards since values are only applicable for crushing & impact hazards !
 - 3. Alternatives where applications may require higher handling forces (torque) or speeds and the use of the standard limits is precluded !


	Body	Specific body area		Quasi static contact Maximum allowable		Transient contact Maximum allowable
Z.S.	region			pressure [N/cm ²]	Force [N]	pressure or force Multiplier (PT)
1*^*/	Skull and	1	Mid of forehead	130	130	NOT
	Forehead Face	2	Temple Masticatory muscle	110 110	65	ACCEPTABLE !
	Neck	4	Neck muscle	140	150	
	Back and	5 6	7th neck muscle Shoulder joint	210 160	210	
	Shoulders Chest	7 8	5th lumbar vertebra Sternum	210 120	210	
)ଧ୍ୟ ଧ	Chest	9	Pectoral muscle	120	140	
1	Abdomen	10	Abdominal muscle	140	110	
\0/	Pelvis	11	Pelvic bone	210	180	
111	Upper arms &		Deltoid muscle	190	150	
فتترابعه	elbow joints Lower arms &	<u>13</u> 14	Humerus Dadius hans	220		
\cap		14	Radius bone Forearm muscle	190 180	160	
⊊ ∕	wrist joints	16	Arm nerve	180	100	
<u>∕.</u> <	Hands &	17	Forefinger pad d	300		x 2
$\int \int \int \int dx dx dx dx$	Fingers	18	Forefinger pad nd	270		
1 []	goro	19	Forefinger end joint d	280		
		20	Forefinger end joint nd	220		
4.31		21	Thenar eminence	200	140	
(× 4\1 -		22	Palm of the hand d	260		
		23	Palm of the hand nd	190		
		24	Back of the hand d	200		
\ /		25	Back of the hand nd	190		
1 2 1	Thighs &	26	Thigh muscle	250	220	
1.11	knees	27	Kneecap	220		
	Lower legs	28	Middle of shin	220	130	ISO/TS 15066
\U/		29	Calf muscle	210		130/13 13000

(* including amgasonably foreseeable misuse

\$116


SAFECOLLABORATION BY LIMITING POWER & FORCEICK SAFEINIERACIION BETWEEN ROBOIS (MACHINE) & HUMANS (OPERAIORS) Sensor Intelligence.

- In most applications, the above mentioned criteria can not be achieved
- To make collaborative applications, using of power & force limiting, possible additional safeguarding can be used;
 - monitoring the scene & allowing higher speeds and accelerations where contact is not imminent
 - detecting imminent contacts & preventing those who may become hazardous
 - preventing the contact where injuries are related to other hazards (shearing, stabbing, etc.)
 - preventing contacts with the head/ face (or making those negligible ?)

SAFECOLLABORATION BY LIMITING POWER & FORCEICK SAFEINIERACIION BETWEEN ROBOIS (MACHINE) & HUMANS (OPERATORS) Sensor Intelligence.

- Risk reduction is achieved by maintaining a minimum (protective) separation distance between operator & robot at all times. This can be achieved by reducing robot speed or altering the robot path
- Human detection in the collaborative workspace is required
- Any humans in the collaborative workspace shall be detected.
 Failure in detect and track all present humans shall lead to a protective stop.
- Failure to maintain the protective separation distance between human & robot shall result in a protective stop
- Standstill shall be monitored by the safety-related control system. Detection of the failure to safely maintain this condition shall result in a category 0 stop.
- The robot may resume automatic operation when the protective separation distance is achieved again

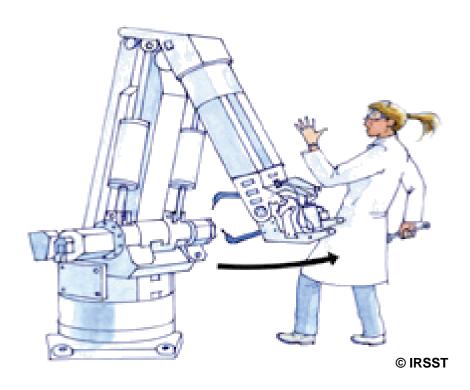
allowa safe collaboration at any time

 This excludes the physical separation and introduces risks due to a possible unexpected behavior of the robot.

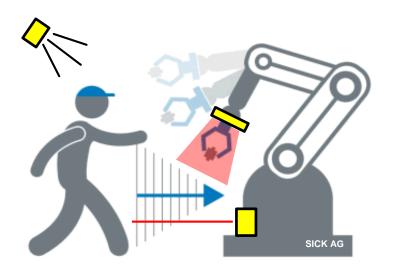
The aim of developments in industrial robotics is to

- The human operator expects a robot which behaves like a reasonable human colleague !
- The risk due to uncertainty is not only directly linked to the degree of autonomy of the robot
- It can also be the result of a complex program (large variety of pre-programmed output states)

SAFETY COLLABORATION TECHNOLOGICAL DEVELOPMENT - THE ROBOTIC COLLEAGUE !



SAFETY COLLABORATION TECHNOLOGICAL DEVELOPMENT - THE IMPACTOF AI



- In future the autonomy degree will depend on the application of AI
- Even simple ANI will result in a large increase of uncertainty
- This will shift the source of the risks related to collaborative operations from the hardware characteristics of the robot to his behavior (application).
- The same will occur in service robotics, where unexpected robot actions & human reactions may lead to many hazardous situations

SAFETY COLLABORATION TECHNOLOGICAL DEVELOPMENT - THE FUTURE OF SAFEGUARDING

- Safeguarding will mainly rely in the avoidance of potential hazardous actions by "taming" the autonomy of the robot
- This will require reliable sensors to provide accurate scene information for the control system.
- Classic safety devices will develop to systems where different appropriate sensors will provide information to logic subsystems (cloud based algorithms) to ensure safe robot behaviour
- The limitation of the force and pressure of contacts will provide the secondary risk reduction.

Otto Görnemann

CD-SMI

Tel.: +49 7681 202 5420

Otto.Goernemann@sick.de

